MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

RC Data Book TRCS-FC-Z 0211 - 1204_201512_EN HFC R134a ELCA_Engine ver.3.3.0.3

TRCS-FC-Z 0211 - 1204

302-1693 kW

High efficiency chiller, air source with free-cooling

(The photo of the unit is indicative and may vary depending on the model)

- ENERGY SAVING
- VERY HIGH EFFICIENCY
- WIDE RANGE
- LOW INRUSH CURRENTS
- EXTREMELY SILENT OPERATION
- INTEGRATED HYDRONIC MODULE

CERTIFICATIONS

Product certifications

(6

EHC

System certifications

MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

Quality System complying with the requirements of UNI EN ISO 9001:2008 regulation Environmental Management System complying with the requirements of UNI EN ISO 14001:2004 regulation Occupational Health and Safety Management System complying with the requirements of BS OHSAS 18001:2007

1.1	PRODUCT FEATURES	pg.1.1.1 / 1.1.2
2.1	PRODUCT PRESENTATION	pg.2.1.1 / 2.1.2
3.1	UNIT STANDARD COMPOSITION	pg.3.1.1 / 3.1.3
4.1	OPTIONS	pg.4.1.1 / 4.1.8
5.1	GENERAL TECHNICAL DATA	pg.5.1.1 / 5.1.7
6.1	OPERATING LIMITS	pg.6.1.1 / 6.1.2
7.1	HYDRAULIC DATA	pg.7.1.1 / 7.1.1
8.1	ELECTRICAL DATA	pg.8.1.1 / 8.1.4
9.1	FULL LOAD SOUND LEVEL	pg.9.1.1 / 9.1.4
10.1	DIMENSIONAL DRAWINGS	pg.10.1.1 / 10.1.3
11.1	HYDRONIC GROUP	pg.11.1.1 / 11.1.9
-	FIXED SPEED CENTRIFUGAL PUMPS SELECTION IN FC UNITS	pg.A1 / A5
12.1	VARIABILE FLOW HYDRAULIC GR.	pg. B1 / B4

Liability disclaimer The present publication is drawn up by of information only and does not constitute an offer binding upon Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A.

Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. has compiled the content of this publication to the best of its knowledge. The data contained herein are subject to change without notice. Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A. explicitly rejects any liability for any direct or indirect damage, in the broadest sense, arising from or related to the use and/or interpretation of this publication. All content is copyrighted by Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A.

The units highlighted in this publication contain HFC R134a [GWP₁₀₀ 1430] fluorinated greenhouse gases.

LEGEND

Cooling Free cooling

R-134a

FREE C.

Compressors SCREW

Exchangers

Other features

Axial fan Flooded evaporator VPF VSpeed

Screw compressor

GREEN Certification relevant

GREEN CERTIFICATION RELEVANT

Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A., as a major player in the world HVAC market and a leading manufacturer of energy efficient, sustainable HVAC solutions, recognizes and supports the diffusion of green certification systems, as an effective way to deliver high performance buildings and improve the quality and the sustainability of the built environment.

Since the first certification system was introduced at the beginning of the 1990s, the demand for certified buildings has grown considerably, as well as the number of standards, rating and certification programs. Operating worldwide Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A., has extensive experience with many of them and is active member of Green Building Council Italy.

Mitsubishi Electric Hydronics & IT Cooling Systems S.p.A., commitment to develop responsible and sustainable HVAC solutions, is reflected by a full range of premium efficiency products and systems, designed with special care to improve building energy performance ratings, according to major certification protocols, including LEED, BREAM, GREENSTAR, BCA, NABERS, DNGB, HQE and BEAM.

To find out more about how our products contribute to enhanced green certification rating and energy performance of a building, please refer to:

https://www.melcohit.com/GLOBAL/Company/Green-Certifications/ QR%20code/

INCIPIT

2.1 PRODUCT PRESENTATION

Outdoor unit for the production of chilled water, equipped with oil-free centrifugal compressors, with R134a, axial EC fans, condensing coil with copper tubes and aluminum fins, shell and tube flooded evaporator and electronic expansion valve. Base and supporting structure and panels are are of galvanized epoxy powder coated steel. The unit is supplied with refrigerant and has been factory tested. On-site installation therefore just involves making connections to the mains power and water supplies.

The rotor speed digital control allows an accurate and efficient thermoregulation in every operating condition. An additional brazed plate heat exchanger constitutes the economizer and improves the refrigerant ciruit efficiency (not present in sizes 0211 and 0452).

These units, fitted with free-cooling coils, are used in IT-cooling, civil and industrial installations when the demand for cooling load persists even during the cold months or when the outdoor temperature is lower than the temperature of the liquid return line. In free cooling mode, the fluid is cooled by outside air, thus lowering the load of the compressors until it is reduced to zero.

The NG configuration complies with applications where it is not allowed or desired the use of ethylene glycol.

2.3 ENERGY SAVING

Energy saving guaranteed by free-cooling, which exploits the low external air temperatures; free-cooling control with optional modulating valve.

2.4 VERY HIGH EFFICIENCY

Top-level seasonal efficiency thanks to technlogical solutions at the forefront: magnetic levitation centrifugal compressors, flooded evaporator, EC fans and advanced control algorithms.

2.5 WIDE RANGE

Extended capacity range.

2.6 LOW INRUSH CURRENTS

Reduced breakaway starting currents thanks to the revolutionary centrifugal compressor.

2.7 EXTREMELY SILENT OPERATION

Extremely silent operation in line with the best on the market, and highly reduced vibrations

2.8 INTEGRATED HYDRONIC MODULE

It consists of 2 pumps with 4-pole motor, fixed or variable speed, with high or low head options to satisfy different industrial or IT-cooling applications and demands for comfort.

PRODUCT FEATURES

FREE-COOLING CHILLER: OPERATING MODES

RC's free-cooling chillers are designed to work in three different modes (Total free-cooling, Hybrid cooling, Mechanical cooling), according to the outdoor air conditions and to the operating water temperature.

The free-cooling chilling effect is granted by special finned coils that allow the air to directly exchange heat with the operating water.

Mechanical Cooling

Conventional Chiller

The outdoor air temperature is equal to or higher than the returning water temperature.

Hybrid Cooling

Optimised Source Management

The outdoor air temperature is lower than the returning water temperature but not cold enough to achieve total free-cooling.

Total Free Cooling

Maximum Energy Saving

The outdoor air temperature is low enough to satisfy the entire cooling demand.

NOTE:

Graphics above show the temperature profile of London and consider a unit working with operating water temperature (in/out) 23°C / 18°C.

As the outdoor air temperature drops 1 degree below the returning water temperature, a valve system redirects the water to the special coils and the benefits of free-cooling begin.

Free-cooling capacity grows with lower air temperature, until it manages to cover the entire cooling demand.

Total cooling capacity is provided by the compressors, in the evaporator. The unit works like an ordinary chiller.

Part of the cooling capacity is provided by the outdoor air, in the freecooling coils, while the rest is provided by the compressors, in the evaporator.

Total cooling capacity is provided by the outdoor air, in the free-cooling coils, while the compressors are off.

3.1 UNIT STANDARD COMPOSITION

3.2 High efficiency chiller, air source with free-cooling Outdoor unit for the production of chilled water featuring oil-free centrifugal compressor, with R134a, axial-flow fans, condensing coil and air-water coil with copper tubes and aluminium fins, shell and tube flooded evaporator and electronic regulation valve. Base and supporting structure and panels are of galvanized epoxy powder coated steel with increased thickness.

Flexible and reliable unit; it easily adapts itself to different thermal load conditions thanks to the precise thermoregulation together with the use of inverter technology.

3.3 Installation note

The unit is supplied fully refrigerant charged and factory tested. On site installation only requires power and hydraulic connection.

3.4 Structure

Base and frame in galvanized steel. The supporting frame are polyester-painted for the highest resistance to external factors: surfaces' hue and brightness are preserved.

Pipes and compressors' box covered with an acoustic layer to reduce global noise emissions.

3.5 Refrigerant circuit

Unit designed with dedicated and independent refrigerant circuits in order to ensure continuous operation, limited pollution, and easy maintenance. In addition to main components described in the following sections, each refrigerant circuit is fitted as standard with:

- electronic expansion valve high and low pressure safety valve liquid line shut-off valve
- compressor's discharge valve
- Compressor's suction motorised valve
- filter on compressor's inlet
- drier filter with replaceable cartridge
- refrigerant line sight glass with humidity indicator
- high and low pressure transducers An additional brazed plate heat exchanger constitutes the economizer and improves the refrigerant circuit efficiency (not present in sizes 0211 and 0452).

3.6 Water circuit

- Free Cooling "FC" two way-valve ON-OFF
- water-air heat exchanger

3.7 Water circuit NG Free Cooling "FC NG"

- The internal water circuit, filled with a 30% ethylene glycol solution and linked to the water-air exchangers, is made up of:
- circulation pump
- intermediate plate heat exchanger
- antifreeze electric heater for plate heat exchanger pump shut off valves
- makeup tap
- Inlet valve
- pressure gauge expansion tank
- water-air heat exchanger

3.8 Anti-freeze heaters and thermal insulation

		Tair > -15°C			
	Bectrica	Bectrical heaters		Thermal insulation	
	Std FC	NG FC	Std FC	NG FC	
Evaporator	No	Yes	9 mm	18 mm	
Pipes	No	Yes	9 mm	18 mm	
Pumps	No	Yes	9 mm	18 mm	
NG heat exchanger	-	Yes	84	18 mm	
NG pump		No		9 mm	
NG pipes		No	· · · ·	9 mm	

	01	100-1	an > 20 C		
	Bectrica	Bectrical heaters		l insulation	
	Std FC	NG FC	Std FC	NG FC	
Evaporator	No	Yes	9 mm	18 mm	
Pipes	No	Yes	9 mm	18 mm	
Pumps	Yes	Yes	9 mm	18 mm	
NG heat exchanger		Yes	- 54	18 mm	
NG pump	1.00	No		9 mm	
NG pipes		No		9 mm	

NOTE: For this configuration the low temperature kit is required.

3.9 Compressor

Two stage, variable speed, centrifugal compressor with aluminium impellers, designed requiring no oil for lubrication. Compressor constructed with cast aluminium casing and high-strenght thermoplastic electronics enclosures. Compressor provided with radial and axial magnetic bearings to levitate the shaft thereby eliminating metal to metal contact, and thus eliminating friction and the need for oil. Each bearing position is sensed by position sensors to provide real-time repositioning of the rotor shaft, controlled by the on-board digital electronics. Compressor speed is reduced as condensing temperature and/or heat load reduces, optimizing energy performance through the entire range.

Continuous modulation is possibile thanks to the integrated inverter. Signals from the compressor controller determine the inverter output frequency, voltage and phase, thereby regulating the motor speed. In case of power failure, the compressor is capable of allowing for a normal de-levitation and shutdown. Inlet Guide Vanes is built-in to further trim the compressor capacity in conjuction with the variable-speed control, to optimize compressor performance at low loads.

The compressor is provided with a direct drive, high efficiency, permanent-magnet powered synchronous motor pulse-width-modulating (PWM) voltage supply. Motor cooling is by liquid refrigerant injection. A non-return valve on the discharge port of the compressor is installed to protect against backflow of refrigerant during coastdown; a thermal protection protects against over-currents while a soft-charge device reduces in-rush starting current under 2 amps.

3.10 Plant side heat exchanger

Shell and tube heat exchanger, fully designed and manufactured by RC, working as flooded type evaporator, with water flowing inside the pipes and refrigerant flowing in the shell side.

The steel shell is insulated with a foamed polyethylene closed-cell mat of 9 mm thikness (Std configuration) or 18 mm (NG configuration) and a thermal condcuctivity of 0,033 W/mK at 0°C to avoid condensation on its surface. The copper tubes are internally and externally grooved to improve heat exchange. A drop's separator is integrated in the evaporator to protect the compressor against the possibility of liquid's suction. A differential pressure switch is already fitted in order to monitor the waterflow while the unit is working, avoiding the risk of ice generation. The heat exchanger comply with PED standards, concerning to operating pressure. In NG configuration units, the shell and tube evaporator, the intermediate plate heat exchanger and the water pipes are equipped with electrical heaters, to protect these components from freezing in case of unit's stand by

Water side connections with grooved coupling with weld end counter-pipe user side.

3.11 Source side heat exchanger

The finned coil exchanger, made from copper tubes and aluminium fins spaced to optimise heat exchange efficiency, is divided into two sections. One is dedicated to condensation and the other to air-cooling the water in the Free Cooling mode. The exchanger is suitably sized to cater for pressure drops whilst assuring the best heat exchange.

3.12 Fan section source side

Axial electronically commutated fans (EC fans), with external rotor, profiled die-cast aluminium blades, housed in aeodynamic hoods complete with guard grille. 6-poles electric motor with built-in thermal protection. The brushless motor, governed by a special controller, continuously adjust fans' speed to minimize energy consumption, electromagnetic noises and current's absorption even during start-up phase.

3.13 Electrical and control panel

Electrical and control panel built to EN60204-1 and EC204-1 standards. complete with:

- electronic controller
- control circuit transformer
- general door lock isolator
- power circuit with bar distribution system EMC filter and reactor on the compressor's power circuit
- fuses for compressors

- fuses for compressors terminals for cumulative alarm block remote ON/OFF terminals spring-type control circuit terminal board auxiliary 4-20mA analogue input relays for remote pump(s) activation for plant side and heat source side (only for units without hydronic pumps) outdoor air temperature probe forced ventilation of compressor enclosure Power supply: 400V~ ±10% 3ph 50Hz PE

3.14 Certification and applicable directives

- The unit complies with the following directives and relative amendments:
- CE Declaration of conformity certificate for the European Union EAC Product quality certificate for Russian Federation Electromagnetic compatibility EN 61000-3-4
- Machine directive 2006/42/EC
- PED directive 97/23/EC
- Low Voltage directive 2006/95/EC

- ElectroMagnetic compatibility directive 2004/108/EC ISO 9001 Company's Quality Management System certification ISO 14001 Company's Environmental Management Svstem certification

3.15 Tests

Tests performed throughout the production process, as indicated in ISO9001

Performance or noise tests can be performed by highly qualified staff in the presence of customers.

Performance tests comprise the measurement of:

- electrical data
- water flow rates
- working temperatures
- power input
- power output
- pressure drops on the water-side exchanger both at full load (at the

conditions of selection and at the most critical conditions for the condenser) and at part load conditions.

During performance testing it is also possible to simulate the main alarm states.

Noise tests are performed to check noise emissions according to $\ensuremath{\mathsf{ISO9614}}.$

3.16 Electronic control W3000 TE

The brand new W3000TE controller offers advanced functions and algorithms. The large format keyboard provides a complete view of the statuses of the unit. The controls and the complete LCD display favour an easy and safe access to the machine setup. These resources allow the assessment and intervention on the unit, by means of a multi-level menu, with selectable user's language. The led icons immediately show the operating status of the circuits, as well as of the fans and of the water pumps (if present). An optional extra is the touch screen interface: 7.0" WVGA colour display with adjustable LED backlight and front USB port. The touch screens, safe access to the data with a three-level password protection as well as the graphic display of the performance of some monitored measurements.

The diagnostics comprises a complete alarm management system, with "black box" (via PC) and alarm log functions (via display or also PC) for a better analysis of the unit performance.

For the systems made of several units, the adjustment of the resources is performed by optional proprietary devices.

Consumption metering and performance measurement are possible as well. Supervision can be easily developed via proprietary devices or the integration in third party systems by means of the most common protocols as ModBus, Bacnet-over-IP, Echelon LonWorks, Bacnet MS/TP protocols.

Compatibility with the remote keyboard managing up to 8 units.

The presence of the programmable timer allows the creation of an operating profile containing up to 4 typical days and 10 time bands.

The control is characterized by the continuous modulation of the unit capacity, based on PID algorithms and referring to the water delivery temperature.

Optionally (VPF package), capacity modulation can be integrated with hydraulic flow modulation, thanks to inverter-driven pumps and to specific resources for the hydraulic circuit.

3.16 Touch screen Touch screen interface

3.17 Versions

/K – Compact with standard efficiency Key efficiency, compact version.

/CA - High energy efficiency

High energy efficiency units for the minimum investment payback time. High performing heat exchangers and generous heat exchanger's surfaces.

3.18 Configurations

< >, Standard unit Standard FreeCooling unit for water and glycol systems.

NG, No glycol unit

This unit does not require any antifreeze solutions on the chilled water circuit. An intermediate plate heat exchanger isolates the water-glycol that flows in the free-cooling coils from the water that flows throughout the plant. A dedicated pump circulates the water-glycol from the free-cooling coils to the intermediate plate heat exchanger.

4.1 OPTIONS

OPTIONS	DESCRIPTIONS	BENEFITS	AVAILABLE FOR MODELS			
1560 POWER SUPPLY CONFIG	1560 POWER SUPPLY CONFIGURATION					
1561 DOUBLE POWER SUPPLY (ATS)	An ATS (Automatic Transfer Switch) is installed within the electrical board. The device automatically switches the electrical load between a principal power supply (i.e. mains) and an auxuliary power supply (i.e. backup generator). The ATS automatically senses if one of the sources has lost or gained power. When an outage occurs in the principal power supply, the switch autonomously switches over to the secondary line. When the main line becomes available again the supply is restored to this line. It is possible to set the line priority and frequency of checking.	It enhances system's redundancy and reliability. Reduces unit's downtime in case of mains power outage.	ALL			
1562 DOUBLE P.SUPPLY (MOTOR. CH.OVER)	A motorized changeover is installed within the electrical board. The device switches the electrical load between a principal power supply (i.e. mains) and an auxuliary power supply (i.e. backup generator). The changeover is with remote control (i.e. signal of generator start up).	It enhances system's redundancy and reliability. Reduces unit's downtime in case of mains power outage.	ALL			
380 NUMBERED WIRING						
381 NUMBERED WIRING ON EL. BOARD			ALL			
382 PWR WIRINGS ACC.TO UK REQUEST	Facilitate maintainance interventions to the electrical board connections.		ALL			
383 NUMBERED WIRINGS+UK REQUESTS			ALL			
3300 COMPRESSOR REPHASIN	IG					
3302 COMPR.POWER FACTOR CORR.0,95	Capacitors on the compressors' power inlet line.	The unit's average cos(phi) increases.	ALL			
4180 REMOTE CONNECTION A	RRANGEMENT					
4181 SERIAL CARD MODBUS	Interface module for ModBUS protocols.	Allows integration with BMS operating with ModBUS protocol.	ALL			
4182 SERIAL CARD FOR LONWORKS	Interface module for Echelon systems.	Allows integration with BMS operating with LonWorks protocols	ALL			
4184 SERIAL CARD BACNET MS/TP RS485	Interface module for BACnet protocols.	Allows integration with BMS operating with BACnet protocol.	ALL			
4185 SERIAL CARD FOR BACNET OVER IP	Interface module for BACnet OVER-IP protocols.	Allows to interconnect BACnet devices over Internet Protocol within wide-area networks.	ALL			
6160 AUXILIARY INPUT						
6161 AUXILIARY SIGNAL 4-20mA	420mA analogue input.	Allows to change the operating set-point according to the value of current applied to the analogue input.	ALL			
6162 REMOTE SIGNAL DOUBLE SP	Allows to activate the Energy Saving set-point.	Allows to activate the Energy Saving set-point.	ALL			
6170 DEMAND LIMIT						
6171 INPUT REMOTE DEMAND LIMIT	Digital input (voltage free)	It permits to limit the unit's power absorption for safety reasons or in temporary situation.	ALL			

OPTIONS	DESCRIPTIONS	BENEFITS	AVAILABLE FOR MODELS		
6190 TYPE OF VISUAL DISPLAY					
6195 W3000 TOUCH VISUAL DISPLAY	Colour WVGA 7" display keyboard with adjustable LED backlight (WARNING: with outdoor temperature below 0°C the display response time may visibly increase)	The touch-screen's technology is characterized by an easy-to-access data, and it allows an effective graphical representation of the main figures protecting the access through 3 privilege levels.	ALL		
3360 PUMPS COMAND RELAYS	3				
3361 1 RELAY EVAPORATOR PUMP	Relay for the pump(s) on/off.	It controls the operation of 1 evaporator external pump with a devoted on/off signal.	ALL		
3362 1+1 RELAY EVAPORATOR PUMPS	Relay for the pump(s) on/off.	It permits the pumps on/off. In case of 2 pumps, one in stand-by to the other, it's possible to balance the operating hours between them.	ALL		
3390 ELECTRIC HEATER ON B	OARD				
3391 ELECTRIC HEATER ON BOARD	Electrical heater fed directly from the unit, is automatically activated at temperatures internal QE below 30 ° C (off state at T higher than 40 ° C).	It avoids the risk of humidity condensation on the electrical panel.	ALL		
3420 LIGHTS ON ELECTRIC BO	ARD				
3421 LIGHTS ON ELECTRIC BOARD	Electrical board equipped with lights.	Facilitate maintainance interventions.	ALL		
3430 REFRIGERANT LEAK DET	ECTOR				
3431 REFRIG. LEAK DETECTOR	Refrigerant leak detection system, supplied factory mounted and wired in the electrical board. In case of leak detection it will raise an alarm.	It promptly detects gas leakages	ALL		
3432 REFRIG. LEAK DETECTOR+MIGR.	Refrigerant leak detection and migration system. In case the device detects a leakage the unit stops and stores the remaining refrigerant inside the evaporator, waiting for the intervention of a technician.	It promptly detects gas leakages, stops the unit and stores the remaining refrigerant.	ALL		
3433 GAS LEAK CONTACT+COMPR. OFF	Refrigerant leak detection system, supplied factory mountedand wired in the electrical board. In case of leak detection it will raise an alarm and stop the unit.	It promptly detects gas leakages and stops the unit.	ALL		
3450 ELECTR. COMP. AS IEC 6	1000-6				
3451 EMC COMP. FOR RESIDENTIAL APP.	EMC compatibility for residential applications as per EN61000-6-3	Assure units' EMC compatibility as per EN61000-6-3, for residential, commercial and light industrial applications.	ALL		
5920 MANAGEMENT & CONTRO	OL SYSTEMS				
5921 NETWORK ANALYZER FOR DEMETRA	This option includes all following devices on-board the unit panel: - network analyzer operating on ModBUS protocol over RS-485 (without certification MID) - current transformers.	This accesory allows to acquire the electrical data and the power absorbed by the unit and send them via RS-485 bus to an external device for energy metering (DEMETRA - see dedicated manual).	ALL		

OPTIONS	DESCRIPTIONS	BENEFITS	AVAILABLE FOR MODELS
5922 ClimaPRO ModBUS RS485 - MID	This option includes all following devices on-board the unit panel: - MID certified network analyzer operating on ModBUS over RS-485 - Current transformers - W3000TE controller - Software release LA09 or later version.	This accessory allows to acquire the electrical data and the power absorbed by the unit and communicate with ClimaPRO via high level communication interface based on ModBUS over EIA RS-485. More specifically, the data collected are: power supply, current, frequency, power factor (\cos_{ϕ}), electrical power consumption, energy consumption. This specific energy meter model is MID certified and can therefore be used for billing applications. This option also ensures the compatibility between the units and ClimaPRO, thus allowing ClimaPRO to acquire all the main unit's operating variables and status by means of a high level communication interface to the controller installed onboard the unit panel.	ALL
5923 ClimaPRO BacNET over IP	This option includes all following devices on-board the unit panel: - network analyzer operating on BACnet over IP - Current transformers - W3000TE controller - Software release LA09 or later version.	This accessory allows to acquire the electrical data and the power absorbed by the unit and communicate with ClimaPRO via high level communication interface based on BACnet over IP. More specifically, the data collected are: power supply, current, frequency, power factor (\cos_{ϕ}), electrical power consumption, energy consumption. This network analyzer is not MID certified and cannot therefore be used for billing applications. This option also ensures the compatibility between the units and ClimaPRO, thus allowing ClimaPRO to acquire all the main unit's operating variables and status by means of a high level communication interface to the unit panel.	ALL
5924 ENERGY METER(W/ DISPLAY) FOR BMS	This option includes all following devices on-board the unit panel: - network analyzer with display operating on ModBUS protocol over RS-485 (without certification MID) - current transformers.	This accesory allows to acquire the electrical data and the power absorbed by the unit, display them and send them via RS-485 bus to the BMS for energy metering.	ALL
4500 FAST RESTART			
4501 Fast RE-START	Unit fast restart management after power failure	The management of the fast restart allows to minimize downtimes in case of power failure, keeping all the necessary unit safeties. The fast restart arrangement requires an external 203V AC 300VA UPS power supply, by customer.	ALL
890 CONDENSING COIL			
881 Cu/Cu EXTERNAL COIL	Air-refrigerant heat exchanger with copper fins and tubes.	Recommended for applications in corrosive atmospheres	ALL
894 Cu PIPES/PREPAINTED ALL. FINS	material.	Recommended for applications in medium level pollution atmospheres.	ALL

OPTIONS	DESCRIPTIONS	BENEFITS	AVAILABLE FOR MODELS
895 FIN GUARD SILVER TREATM	Air-refrigerant heat exchanger with epoxidic treatment on coils and fins.	Recommended for marine exposure conditions, with an high level of pollution or other aggressive atmospheres.	ALL
2000 COIL PROTECTION			
2001 COIL PROT.GRILLS IN PERALUMAN	Coil protecting grilles	Protects against the intrusion of solid bodies with mediumlarge dimensions.	ALL
2870 OPERATING RANGE TRCS	S-FC-Z		
2871 AIR TEMP. DOWN TO -15°C	Kit to increase the unit's operating range.		ALL
2872 AIR TEMP. DOWN TO -25°C	Kit to increase the unit's operating range.		ALL
1800 EVAPORATOR WATER FL	OW SWITCH		
1801 EVAPORATOR WATER FLOW SWITCH			ALL
2910 HYDRAULIC CONNECTION	NS		
2911 FLANGED HYDRAULIC CONNECTIONS			ALL
1220 FREE-COOLING TEMPERA	ATURE		
1221 MODULATION VALVE	2 way modulating valve for the control of the water temperature	Ensure the control of the leaving water temperature when the outdoor temperaure is very low. The use of this option is mandatory when the differenco between the leaving water temperature and the outdoor temperature is higher than 15°K.	ALL
3180 PUMP ASSEMBLY			
3183 N.2 PUMPS WITH 4 POLES L.P.	Hydronic group (see dedicated section).		ALL
3184 N.2 PUMPS WITH 4 POLES H.P.	Hydronic group (see dedicated section).		ALL
3240 PUMP ASSEMBLY WITH V	PF SYSTEM		
3245 N.2 PUMPS 4 POL L.P+VPF	Hydronic group with pre-arrangement for the control of the inverter driven pumps for the plant's primary circuit (see dedicated section). This option includes: control devices to read the signals (4-20mA) coming from pressure transducers placed in the plant and so to manage the pumps and the by-pass valve (0-10V signal), additional pressure transducer in the evaporator [pressure transducers, pumps and by-pass valve to be supplied by others]		ALL

OPTIONS	DESCRIPTIONS	BENEFITS	AVAILABLE FOR MODELS	
3246	Hydronic group with		ALL	
N.2 PUMPS 4 POL	pre-arrangement for the control of			
H.P+VPF	the inverter driven pumps for the			
	plant's primary circuit (see			
	This option includes: control			
	devices to read the signals			
	(4-20mA) coming from pressure			
	transducers placed in the plant			
	and so to manage the pumps and the by-pass value (0-10)/ signal)			
	additional pressure transducer in			
	the evaporator [pressure			
	transducers, pumps and by-pass			
VPF CONTROL MANAGER				
VPF D CONTROL FROM			ALL	
UNIT				
3030			ALL	
VPF CONTROL FROM				
MANAGER W3000				
3045	Hydronic group with		ALL	
N.2 PUMPS 4 POL	pre-arrangement for the control of			
L.P+VPF.D	the inverter driven pumps for the			
	plant's primary circuit (see			
	dedicated section).			
	devices to read the signals			
	(4-20mA) coming from pressure			
	transducers placed in the plant			
	and so to manage the pumps and			
	additional pressure transducer in			
	the evaporator [pressure			
	transducers, pumps and by-pass			
	valve to be supplied by others]			
	Hydronic group with		ALL	
H P+VPF D	the inverter driven pumps for the			
	plant's primary circuit (see			
	dedicated section).			
	This option includes: control			
	(4-20 mA) coming from pressure			
	transducers placed in the plant			
	and so to manage the pumps and			
	the by-pass valve (0-10V signal),			
	additional pressure transducer in			
	transducers, pumps and by-pass			
	valve to be supplied by others]			
3230				
PUMP ASSEMBLY WITH 2	PS SYSTEM			
3235	Hydronic group with		ALL	
N.2 PUMPS 4 POL	pre-arrangement for the control of			
LH+2PS	the inverter driven pumps for the			
	dedicated section).			
	This function adjusts the pump			
	rotational speed according to the			
	tree-cooling chiller operating			
	flow costant.			
3236	Hydronic aroup with		ALL	
N.2 PUMPS 4 POL	pre-arrangement for the control of			
LH+2PS	the inverter driven pumps for the			
	plant's primary circuit (see			
	This function adjusts the numb			
	rotational speed according to the			
	free-cooling chiller operating			
	mode. It keeps the water primary			
1	now costant.			

·	,		
OPTIONS	DESCRIPTIONS	BENEFITS	AVAILABLE FOR MODELS
2020 ANTI-INTRUSION GRILLS			
2021 ANTI-INTRUSION GRILLS	Anti-intrusions grills	Avoid the intrusion of solid bodies into the unit's structure.	ALL
2100 ANTIVIBRATION MOUNTI	NG		
2101 RUBBER TYPE ANTIVIBR.MOUNTING			ALL
2102 SPRING TYPE ANTIVIBR.MOUNTING			ALL
1970 LONG DISTANCE TRANSF	PORTATION		
1971 REINFORCING BARS	Bars used to reinforce the structure	Improve resistance during long transportation	ALL
9970 PACKING			
9965 NYLON + COIL PROT. PACKING			ALL
9967 COIL PROTECTION PACKING			ALL
9979 CONTAINER PACKING			ALL

1561 - Double power supply (ATS)

1562 - Double power supply (motorized changeover)

These accessories entail the substitution of the standard general lock door isolator with a door microswitch that switches the changeover to 0 position (open).

In some units, the transfer switch requires an enlarged electrical board. With these options, standard unit lengths change as follows:

UNIT SIZE	LENGTH INCREASE WITH RESPECT
0211	-
0251	-
0351	-
0452	+ 250 mm
0552	+ 250 mm
0652	+ 250 mm
0712	+ 250 mm
0803	+ 250 mm
0903	+ 250 mm
0953	+ 250 mm
1003	+ 250 mm
1164	+ 250 mm
1204	+ 250 mm

4501 - Fast restart (UPS excluded)

Time frames shown in Tables 1 and 2 are defined from the power restoration

The ramp-up time to achieve 100% of cooling capacity (without freecooling contribution) depends on several factors:

- Number of compressors;

- Power outage duration;

- Cooling capacity required;

- Water and outdoor air temperatures;

- Compressors' operating conditions before the power failure.

For the above-mentioned elements, the data listed in Table 2 are subject to a tolerance.

Table 1 - First compressor start-up time				
	Unit with f	ast restart		
Standard unit	After power outage < 40"	After power outage ≥ 40"		
4' 30''	26"	50"		

Table 2 - Ramp-up time for 100% cooling capacity					
No	Standard	Unit with fast restart *			
compr.	unit *	After power outage < 40"	After power outage ≥ 40"		
1	16'10"	5'00''	4'20"		
2	17'10"	6'30''	5'50"		
3	16'00"	8'00''	7'20"		
4	16'40"	9'30"	8'50"		

* Reference conditions:

Plant (side) cooling exchanger water (in/out) 12°C / 7°C; Source (side) heat exchanger air (in) 35°C.

1801 - Evaporator water flow switch

The accessory is supplied loose.

3183; 3184 - Pump assembly

3245 ; 3246 - Pump assembly with VPF system 3045 ; 3046 - Pump assembly with VPF.D system

3235; 3236 - Pump assembly with 2PS system

To request this option, please contact RC's sales department. The pump assembly could entail a unit length increase.

4.2 Chiller Plant Control with Active Optimization System

ClimaPRO 87C ClimaPRO OOU represents the state-of-the-art platform for chiller plant management and control.

ClimaPRO ensures to actively optimize the entire chiller plant by managing and adjusting each component directly involved in the production and the distribution of the heating and the cooling energies, therefore involving chillers and heat pumps, pumping groups as well as the source-side devices like, for example, the cooling towers.

In particular, ClimaPRO measures in real-time all the operating variables from the field, for each individual device and each of the main system branche, by using serial communication lines as well as dedicated analogue signals.

The acquired data are then compared with the design data of each single unit at any different working conditions, thus allowing to implement control strategies based on dynamic algorithms which take into account the real operating conditions.

On the basis of these values, an advanced diagnostic module also allows to assess the level of efficiency for each individual unit, translating data into easy-to-read information in order to simplify and optimize the maintenance activities.

The "Chart Builder" software module allows to display the trends of the main operating variables. The "Reporting" module allows to send reports to selected users, including data and system's status of the main devices as well as to perform calculation of the energy indexes for each single unit and for the entire chiller plant.

The accessibility to ClimaPRO ÖÔU is ensured by an integrated web server that makes it visible from any computer equipped with aÁ ^à browser, either locally or remotely.

[SI System]

TFCS-FC-Z /K			0211	0351	0452	0552	0652	0712	0903	0953	1003	1164
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE												
FREE-COOLING OFF												
Cooling capacity	(1)	kW	302	483	594	689	943	980	1185	1253	1421	1578
Compressors power input	(1)	kW	82,0	131	167	171	268	256	296	349	398	424
Total power input	(1)	kW	87,1	141	179	181	285	275	320	373	425	455
EER	(1)	kW/kW	3,47	3,43	3,33	3,81	3,31	3,56	3,70	3,36	3,35	3,47
Free Cooling (Tae = 10,0°C)												
Power	(1)	kW	77,3	127	161	184	245	271	332	327	371	434
% Free cooling	(1)	%	26	26	27	27	26	28	28	26	26	28
FREE-COOLING ON 100%												
Cooling capacity	(2)	kW	302	483	594	689	943	980	1185	1253	1421	1578
Total power input	(2)	kW	5,10	9,60	12,0	10,2	16,8	19,2	24,0	24,0	26,4	31,2
EER	(2)		59,3	50,3	49,5	67,5	56,2	51,1	49,4	52,2	53,8	50,6
Total FC temperature	(2)	°C	-1,9	-2,5	-1,9	-1,4	-2,7	-1,4	-1,2	-2,7	-2,5	-1,6
EXCHANGERS												
HEAT EXCHANGER USER SIDE IN REFRIGERATION												
Glycol	(1)	%	30	30	30	30	30	30	30	30	30	30
Water flow	(1)	l/s	16,0	25,6	31,5	36,5	50,0	51,9	62,8	66,4	75,3	83,6
Pressure drop	(1)	kPa	86,0	98,6	89,3	104	104	107	91,8	80,2	103	106
COMPRESSORS												
Compressors nr.		N°	1	1	2	2	2	2	3	3	3	4
Number of capacity		N°	0	0	0	0	0	0	0	0	0	0
No. Circuits		N°	1	1	1	1	1	1	2	2	2	2
Regulation			STEPLESS									
Min. capacity step		%	-	-	-	-	-	-	-	-	-	-
Refrigerant			R134a									
Refrigerant charge		kg	120	140	260	260	320	320	430	520	520	540
Oil charge		kg	0	0	0	0	0	0	0	0	0	0
FANS												
Quantity		N°	6	8	10	12	14	16	20	20	22	26
Air flow		m³/s	26,00	33,89	42,88	46,38	61,86	70,69	87,85	85,76	96,06	113,52
Fans power input		kW	0,85	1,20	1,20	0,85	1,20	1,20	1,20	1,20	1,20	1,20
NOISE LEVEL												
Noise Pressure	(3)	dB(A)	56	61	62	58	63	63	64	64	65	65
Sound power level in cooling	(4)	dB(A)	88	93	94	91	96	96	97	97	98	98
SIZE AND WEIGHT												
Α	(5)	mm	4000	4000	4900	6400	7000	7900	10600	11200	11200	13000
В	(5)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260
Н	(5)	mm	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	(5)	kg	3430	3850	5080	5820	6340	6900	9750	10260	10530	12290

Notes:

Notes: 1 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%. 2 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Ethylene glycol 30%. 3 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 4 Sound power on the basis of measurements made in compliance with ISO 9614. 5 Unit in standard configuration/execution, without optional accessories. - Unavailable

[SI System]

Power supply V/ph/Hz 400/3/50 PERFORMANCE FREE-COOLING OFF Cooling capacity (1) kW 1649
PERFORMANCE FREE-COOLING OFF Cooling capacity (1) kW 1649
FREE-COOLING OFF
Cooling capacity (1) kW 1649
(1) KVV 104 7
Compressors power input (1) kW 429
Total power input (1) kW 461
EER (1) kW/kW 3.58
Free Cooling (Tae = 10,0°C)
Power (1) kW 450
% Free cooling (1) % 27
FREE-COOLING ON 100%
Cooling capacity (2) kW 1649
Total power input (2) kW 31.2
EER (2) 52.9
Total FC temperature (2) °C -1.8
EXCHANGERS
HEAT EXCHANGER USER SIDE IN REFRIGERATION
Glycol (1) % 30
Water flow (1) I/s 87,3
Pressure drop (1) kPa 115
COMPRESSORS
Compressors nr. N° 4
Number of capacity N° 0
No. Circuits N° 2
Regulation STEPLESS
Min. capacity step % -
Refrigerant R134a
Refrigerant charge kg 540
Oil charge kg 0
FANS
Quantity N° 26
Air flow m³/s 115,56
Fans power input kW 1,20
NOISE LEVEL
Noise Pressure (3) dB(A) 65
Sound power level in cooling (4) dB(A) 98
SIZE AND WEIGHT
A (5) mm 13600
B (5) mm 2260
H (5) mm 2500
Operating weight (5) kg 12350

Notes:

Notes: 1 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%. 2 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Ethylene glycol 30%. 3 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 4 Sound power on the basis of measurements made in compliance with ISO 9614. 5 Unit in standard configuration/execution, without optional accessories. - Unavailable

[SI System]	
-------------	--

TFCS-FC-Z /CA			0211	0251	0351	0452	0552	0712	0803	0903	1003
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE											
FREE-COOLING OFF											
Cooling capacity	(1)	kW	310	354	496	616	714	990	1068	1209	1446
Compressors power input	(1)	kW	80,3	83,0	126	163	164	251	246	286	390
Total power input	(1)	kW	85,4	89,8	134	173	177	268	267	308	412
EER	(1)	kW/kW	3,63	3,94	3,69	3,56	4,03	3,69	4,00	3,92	3,51
Free Cooling (Tae = 10,0°C)											
Power	(1)	kW	88,2	102	138	173	212	275	315	352	388
% Free cooling	(1)	%	28	29	28	28	30	28	29	29	27
FREE-COOLING ON 100%											
Cooling capacity	(2)	kW	310	354	496	616	714	990	1068	1209	1446
Total power input	(2)	kW	5,10	6,80	8,50	10,2	13,6	17,0	20,4	22,1	22,1
EER	(2)		60,7	52,0	58,4	60,4	52,5	58,3	52,4	54,7	65,4
Total FC temperature	(2)	°C	-0,1	-0,2	-1,0	-0,5	0,4	-0,9	0,2	0,0	-1,6
EXCHANGERS											
HEAT EXCHANGER USER SIDE IN REFRIGERATION											
Glycol	(1)	%	30	30	30	30	30	30	30	30	30
Water flow	(1)	l/s	16,4	18,7	26,3	32,6	37,8	52,5	56,6	64,1	76,6
Pressure drop	(1)	kPa	90,3	96,3	104	95,9	111	109	74,6	95,6	107
COMPRESSORS											
Compressors nr.		N°	1	1	1	2	2	2	3	3	3
Number of capacity		N°	0	0	0	0	0	0	0	0	0
No. Circuits		N°	1	1	1	1	1	1	2	2	2
Regulation			STEPLESS								
Min. capacity step		%	-	-	-	-	-	-	-	-	-
Refrigerant			R134a								
Refrigerant charge		kg	120	120	140	260	280	320	430	430	520
Oil charge		kg	0	0	0	0	0	0	0	0	0
FANS											
Quantity		N°	6	8	10	12	16	20	24	26	26
Air flow		m³/s	24,42	28,34	36,01	46,38	60,43	72,03	89,24	96,68	96,68
Fans power input		kW	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
NOISE LEVEL											
Noise Pressure	(3)	dB(A)	56	57	58	58	59	60	61	61	61
Sound power level in cooling	(4)	dB(A)	88	89	90	91	92	93	94	94	94
SIZE AND WEIGHT											
A	(5)	mm	4000	4000	4900	6400	7900	10000	12100	13000	13000
В	(5)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260
Н	(5)	mm	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	(5)	kg	3660	3790	4380	5720	6770	8870	10530	11370	11730

Notes:

1 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.
2 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Ethylene glycol 30%.
3 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level.
4 Sound power on the basis of measurements made in compliance with ISO 9614.
5 Unit in standard configuration/execution, without optional accessories.

- Unavailable

[SI System]

TFCS-FC-Z /NG /K

TFCS-FC-Z /NG /K			0211	0351	0452	0552	0652	0712	0903	0953	1003	1164
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE												
FREE-COOLING OFF												
Cooling capacity	(1)	kW	310	496	610	708	969	1007	1217	1287	1460	1621
Compressors power input	(1)	kW	82,5	132	167	172	270	257	298	351	400	426
Total power input	(1)	kW	87,6	142	180	182	287	277	322	375	427	457
EER	(1)	kW/kW	3,54	3,50	3,40	3,89	3,38	3,64	3,78	3,43	3,42	3,55
Free Cooling (Tae = 10,0°C)												
Power	(1)	kW	71,7	118	149	172	228	251	307	304	345	402
% Free cooling	(1)	%	23	24	24	24	24	25	25	24	24	25
FREE-COOLING ON 100%												
Cooling capacity	(2)	kW	310	496	610	708	969	1007	1217	1287	1460	1621
Total power input	(2)	kW	5,10	9,60	12,0	10,2	16,8	19,2	24,0	24,0	26,4	31,2
EER	(2)		60,9	51,6	50,8	69,4	57,7	52,4	50,7	53,6	55,3	52,0
Total FC temperature	(2)	°C	-4,9	-5,5	-5,0	-4,5	-5,8	-4,5	-4,3	-5,7	-5,6	-4,7
EXCHANGERS												
HEAT EXCHANGER USER SIDE IN REFRIGERATION												
Glycol	(1)	%	0	0	0	0	0	0	0	0	0	0
Water flow	(1)	l/s	14,9	23,7	29,2	33,9	46,4	48,2	58,2	61,6	69,9	77,6
Pressure drop	(1)	kPa	98,1	128	112	137	135	130	113	110	140	154
COMPRESSORS												
Compressors nr.		N°	1	1	2	2	2	2	3	3	3	4
Number of capacity		N°	0	0	0	0	0	0	0	0	0	0
No. Circuits		N°	1	1	1	1	1	1	2	2	2	2
Regulation			STEPLESS									
Min. capacity step		%	-	-	-	-	-	-	-	-	-	-
Refrigerant			R134a									
Refrigerant charge		kg	120	140	260	260	320	320	430	520	520	540
Oil charge		kg	0	0	0	0	0	0	0	0	0	0
FANS												
Quantity		N°	6	8	10	12	14	16	20	20	22	26
Air flow		m³/s	26,00	33,89	42,88	46,38	61,86	70,69	87,85	85,76	96,06	113,52
Fans power input		kW	0,85	1,20	1,20	0,85	1,20	1,20	1,20	1,20	1,20	1,20
NOISE LEVEL												
Noise Pressure	(3)	dB(A)	56	61	62	58	63	63	64	64	65	65
Sound power level in cooling	(4)	dB(A)	88	93	94	91	96	96	97	97	98	98
SIZE AND WEIGHT												
A	(5)	mm	4000	4000	4900	6400	7000	7900	10600	11200	11200	13000
В	(5)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260	2260
Н	(5)	mm	2500	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	(5)	kg	4120	4620	6100	6990	7610	8280	11700	12320	12640	14750

Notes:

Notes: 1 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 0%. 2 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Ethylene glycol 0%. 3 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 4 Sound power on the basis of measurements made in compliance with ISO 9614. 5 Unit in standard configuration/execution, without optional accessories. - Unavailable

[SI System]

TFCS-FC-Z /NG /K			1204
Power supply		V/ph/Hz	400/3/50
PERFORMANCE			
FREE-COOLING OFF			
Cooling capacity	(1)	kW	1693
Compressors power input	(1)	kW	432
Total power input	(1)	kW	463
EER	(1)	kW/kW	3,66
Free Cooling (Tae = 10,0°C)			
Power	(1)	kW	417
% Free cooling	(1)	%	25
FREE-COOLING ON 100%			
Cooling capacity	(2)	kW	1693
Total power input	(2)	kW	31,2
EER	(2)		54,3
Total FC temperature	(2)	°C	-4,9
EXCHANGERS			
HEAT EXCHANGER USER SIDE IN REFRIGERATION			
Glycol	(1)	%	0
Water flow	(1)	l/s	81,0
Pressure drop	(1)	kPa	169
COMPRESSORS			
Compressors nr.		N°	4
Number of capacity		N°	0
No. Circuits		N°	2
Regulation			STEPLESS
Min. capacity step		%	-
Refrigerant			R134a
Refrigerant charge		kg	540
Oil charge		kg	0
FANS			
Quantity		N°	26
Air flow		m³/s	115,56
Fans power input		kW	1,20
NOISE LEVEL			
Noise Pressure	(3)	dB(A)	65
Sound power level in cooling	(4)	dB(A)	98
SIZE AND WEIGHT			
A	(5)	mm	13600
В	(5)	mm	2260
Н	(5)	mm	2500
Operating weight	(5)	kg	14820

Notes:

Notes: 1 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 0%. 2 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Ethylene glycol 0%. 3 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 4 Sound power on the basis of measurements made in compliance with ISO 9614. 5 Unit in standard configuration/execution, without optional accessories. - Unavailable

[SI System]

TFCS-FC-Z/NG/CA

TFCS-FC-Z /NG /CA			0211	0251	0351	0452	0552	0712	0803	0903	1003
Power supply		V/ph/Hz	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50	400/3/50
PERFORMANCE											
FREE-COOLING OFF											
Cooling capacity	(1)	kW	318	363	509	632	733	1017	1097	1242	1485
Compressors power input	(1)	kW	80,8	83,5	126	164	164	253	248	288	392
Total power input	(1)	kW	85,9	90,3	135	174	178	270	268	310	414
EER	(1)	kW/kW	3,70	4,03	3,78	3,63	4,12	3,77	4,09	4,01	3,58
Free Cooling (Tae = 10,0°C)											
Power	(1)	kW	81,0	94,0	127	159	194	253	288	323	358
% Free cooling	(1)	%	25	26	25	25	27	25	26	26	24
FREE-COOLING ON 100%											
Cooling capacity	(2)	kW	318	363	509	632	733	1017	1097	1242	1485
Total power input	(2)	kW	5,10	6,80	8,50	10,2	13,6	17,0	20,4	22,1	22,1
EER	(2)		62,4	53,5	59,9	62,0	53,9	59,8	53,8	56,2	67,2
Total FC temperature	(2)	°C	-3,2	-3,2	-4,1	-3,6	-2,7	-4,0	-2,9	-3,1	-4,7
EXCHANGERS											
HEAT EXCHANGER USER SIDE IN REFRIGERATION											
Glycol	(1)	%	0	0	0	0	0	0	0	0	0
Water flow	(1)	l/s	15,2	17,4	24,4	30,3	35,1	48,7	52,5	59,4	71,1
Pressure drop	(1)	kPa	103	120	131	120	147	133	92,2	117	145
COMPRESSORS											
Compressors nr.		N°	1	1	1	2	2	2	3	3	3
Number of capacity		N°	0	0	0	0	0	0	0	0	0
No. Circuits		N°	1	1	1	1	1	1	2	2	2
Regulation			STEPLESS								
Min. capacity step		%	-	-	-	-	-	-	-	-	-
Refrigerant			R134a								
Refrigerant charge		kg	120	120	140	260	280	320	430	430	520
Oil charge		kg	0	0	0	0	0	0	0	0	0
FANS											
Quantity		N°	6	8	10	12	16	20	24	26	26
Air flow		m³/s	24,42	28,34	36,01	46,38	60,43	72,03	89,24	96,68	96,68
Fans power input		kW	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85	0,85
NOISE LEVEL											
Noise Pressure	(3)	dB(A)	56	57	58	58	59	60	61	61	61
Sound power level in cooling	(4)	dB(A)	88	89	90	91	92	93	94	94	94
SIZE AND WEIGHT											
A	(5)	mm	4000	4000	4900	6400	7900	10000	12100	13000	13000
В	(5)	mm	2260	2260	2260	2260	2260	2260	2260	2260	2260
Н	(5)	mm	2500	2500	2500	2500	2500	2500	2500	2500	2500
Operating weight	(5)	kg	4400	4550	5260	6870	8130	10650	12640	13650	14080

Notes:

Notes: 1 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 0%. 2 Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Ethylene glycol 0%. 3 Average sound pressure level at 10m distance, unit in a free field on a reflective surface; non-binding value calculated from the sound power level. 4 Sound power on the basis of measurements made in compliance with ISO 9614. 5 Unit in standard configuration/execution, without optional accessories. - Unavailable

ENERGY EFFICIENCY

SEASONAL EFFICIENCY IN COOLING (Reg. EU 2016/2281) Process Refrigeration at high temperature

TRCS-FC-Z /K			0211	0351	0452	0552	0652	0712	0903	0953	1003	1164	1204	
Prated,c	(1)	kW	260,8	414,1	507,2	607,7	800,0	850,9	1045	1069	1212	1361	1435	
SEPR	(1)(2)	-	6,66	6,54	6,39	6,64	6,43	6,58	6,45	6,28	6,32	6,30	6,31	

TRCS-FC /CA			0211	0351	0452	0552	0652	0712	0903	0953	1003		
Prated,c	(1)	kW	270,8	319,4	434,1	534,6	650,2	866,7	971,8	1086	1244		
SEPR	(1)(2)	-	6,97	6,90	7,13	6,80	6,88	6,94	6,88	6,88	6,65		

TRCS-FC /NG /K			0211	0351	0452	0552	0652	0712	0903	0953	1003	1164	1204	
Prated,c	(1)	kW	260,3	413,0	506,1	605,9	798,0	849,0	1043	1067	1209	1357	1430	
SEPR	(1)(2)	-	6,20	6,06	5,87	6,14	5,84	6,02	5,95	5,76	5,75	5,64	5,65	

TRCS-FC /NG /CA			0211	0351	0452	0552	0652	0712	0903	0953	1003		
Prated,c	(1)	kW	270,3	318,5	433,0	533,4	648,1	864,7	970,0	1084	1241		
SEPR	(1) (2)	-	6,46	6,21	6,55	6,31	6,17	6,26	6,29	6,24	6,04		

Notes:

(1) Seasonal energy efficiency of high temperature process cooling [REGULATION (EU) N. 2016/2281]
 (2) Seasonal process cooling energy index

Ta in Outdoor air temperature [°C	C]
-----------------------------------	----

- Te out Evaporator outlet temperature [°C]
- Α

Low temperature kit required (option 2872)

Unit in part load operation

For limits to individual sizes, versions and evaporator Δt [°C] temperature, consult ELCA WORLD SOFTWARE. Minimum storage temperature: -20°C

6.2 ETHYLENE GLYCOL MIXTURE

Ethylene glycol and water mixture, used as a heat-conveying fluid, cause a variation in unit performance. For correct data, use the factors indicated in the following tabel.

	Freezing point (°C)												
	0	-5	-10	-15	-20	-25	-30	-35					
		Ethylene glycol percentage by weight											
	0%	12%	20%	30%	35%	40%	45%	50%					
cPf	1	0,985	0,98	0,974	0,97	0,965	0,964	0,96					
cQ	1	1,02	1,04	1,075	1,11	1,14	1,17	1,2					
cdp	1	1,07	1,11	1,18	1,22	1,24	1,27	1,3					

cPf: cooling power correction factor

cQ: flow correction factor

cdp: pressure drop correction factor

For data concerning other kind of anti-freeze solutions (e,g, propylene glycol) please contact our Sale Department.

6.3 FOULING FACTORS

Performances are based on clean condition of tubes (fouling factor = 1). For different fouling values, performance should be adjusted using the correction factors shown in the following table.

	FOULING FACTORS	EVAPORATOR					
SERIES	ff (m² °CW)	F1	FK1	KE [°C]			
VARIOUS	0	1,000	1,000	0,0			
VARIOUS	1,80 x 10⁻⁵	1,000	1,000	0,0			
VARIOUS	4,40 x 10 ⁻⁵	1,000	1,000	0,0			
VARIOUS	8,80 x 10⁻⁵	0,960	0,990	0,7			
VARIOUS	13,20 x 10⁻⁵	0,944	0,985	1,0			
VARIOUS	17,20 x 10⁻⁵	0,930	0,980	1,5			

ff: fouling factors

F1: potential correction factors

FK1: compressor power input correction factors

KE: minimum evaporator outlet temperature increase

7.1 HYDRAULIC DATA

[SI System]

Water flow and pressure drop Water flow in the plant (side) exchanger is given by: $Q=P/(4,186 \times Dt)$ Q: water flow (l/s) Dt: difference between inlet and outlet water temp. (°C) P: heat exchanger capacity (kW)

Pressure drop is given by: Dp= K x (3,6 x Q)^2/1000 Q: water flow (I/s) Dp: pressure drop (kPa) K: unit size ratio

	Power	HEAT EXCHANGER USER SIDE						
SIZE	supply V/ph/Hz	к	Q min I/s	Q max I/s	C.A.S. I	C.a. min I		
TRCS-FC-Z /K /0211	400/3/50	21,8	6,39	17,2	70,0	5000		
TRCS-FC-Z /K /0351	400/3/50	9,77	9,44	25,8	85,0	5000		
TRCS-FC-Z /K /0452	400/3/50	5,84	12,8	35,6	110	5000		
TRCS-FC-Z /K /0552	400/3/50	5,04	14,4	39,7	120	5000		
TRCS-FC-Z /K /0652	400/3/50	2,69	18,6	51,7	140	5000		
TRCS-FC-Z /K /0712	400/3/50	2,57	18,6	51,9	140	5000		
TRCS-FC-Z /K /0903	400/3/50	1,51	26,7	73,6	280	5000		
TRCS-FC-Z /K /0953	400/3/50	1,18	28,6	79,4	305	5000		
TRCS-FC-Z /K /1003	400/3/50	1,18	28,6	79,4	305	5000		
TRCS-FC-Z /K /1164	400/3/50	0,98	34,2	94,4	345	5000		
TRCS-FC-Z /K /1204	400/3/50	0,98	34,2	94,4	345	5000		
TRCS-FC-Z /CA /0211	400/3/50	21,8	6,39	17,2	70,0	5000		
TRCS-FC-Z /CA /0251	400/3/50	17,8	7,50	20,3	75,0	5000		
TRCS-FC-Z /CA /0351	400/3/50	9,77	9,44	26,4	85,0	5000		
TRCS-FC-Z /CA /0452	400/3/50	5,84	12,8	35,6	110	5000		
TRCS-FC-Z /CA /0552	400/3/50	5,04	14,4	39,7	120	5000		
TRCS-FC-Z /CA /0712	400/3/50	2,57	18,6	52,5	140	5000		
TRCS-FC-Z /CA /0803	400/3/50	1,51	26,7	73,6	280	5000		
TRCS-FC-Z /CA /0903	400/3/50	1,51	26,7	73,6	280	5000		
TRCS-FC-Z /CA /1003	400/3/50	1,18	28,6	79,4	305	5000		
TRCS-FC-Z /NG /K /0211	400/3/50	34,3	6,39	17,2	70,0	5000		
TRCS-FC-Z /NG /K /0351	400/3/50	17,5	9,44	25,8	85,0	5000		
TRCS-FC-Z /NG /K /0452	400/3/50	10,2	12,8	35,6	110	5000		
TRCS-FC-Z /NG /K /0552	400/3/50	9,24	14,4	39,7	120	5000		
TRCS-FC-Z /NG /K /0652	400/3/50	4,85	18,6	51,7	140	5000		
TRCS-FC-Z /NG /K /0712	400/3/50	4,32	18,6	51,7	140	5000		
TRCS-FC-Z /NG /K /0903	400/3/50	2,57	26,7	73,6	280	5000		
TRCS-FC-Z /NG /K /0953	400/3/50	2,23	28,6	79,4	305	5000		
TRCS-FC-Z /NG /K /1003	400/3/50	2,22	28,6	79,4	305	5000		
TRCS-FC-Z /NG /K /1164	400/3/50	1,98	34,2	94,4	345	5000		
TRCS-FC-Z /NG /K /1204	400/3/50	1,99	34,2	94,4	345	5000		
TRCS-FC-Z /NG /CA /0211	400/3/50	34,2	6,39	17,2	70,0	5000		
TRCS-FC-Z /NG /CA /0251	400/3/50	30,6	7,50	20,3	75,0	5000		
TRCS-FC-Z /NG /CA /0351	400/3/50	17,1	9,44	25,8	85,0	5000		
TRCS-FC-Z /NG /CA /0452	400/3/50	10,1	12,8	35,6	110	5000		
TRCS-FC-Z /NG /CA /0552	400/3/50	9,22	14,4	39,7	120	5000		
TRCS-FC-Z /NG /CA /0712	400/3/50	4,32	18,6	51,7	140	5000		
TRCS-FC-Z /NG /CA /0803	400/3/50	2,58	26,7	73,6	280	5000		
TRCS-FC-Z /NG /CA /0903	400/3/50	2,56	26,7	73,6	280	5000		
TRCS-FC-Z /NG /CA /1003	400/3/50	2,22	28,6	79,4	305	5000		

Q min: minimum water flow admitted to the heat exchanger Q max: maximum water flow admitted to the heat exchanger C.a. min: minimum water content admitted in the plant C.A.S.: Exchanger water content

8.1 ELECTRICAL DATA

TFCS-FC-Z/K

[SI System]

	_		Maximum values											
SIZE	Power supply			Compressor		Fan	s (1)		Total (1)(2)					
	V/ph/Hz	n	F.L.I. [kW]	F.L.A. [A]	L.R.A. [A]	F.L.I. [kW]	F.L.A. [A]	F.L.I. [kW]	F.L.A. [A]	S.A. [A]				
0211	400/3/50	1	85	135	145	1,95	3	97,0	155	-				
0351	400/3/50	1	130	210	231	1,95	3	146	236	-				
0452	400/3/50	2	85	135	145	1,95	3	190	303	-				
0552	400/3/50	2	85	135	145	1,95	3	193	310	-				
0652	400/3/50	2	130	210	231	1,95	3	287	466	-				
0712	400/3/50	2	130	210	231	1,95	3	291	473	-				
0903	400/3/50	3	2x85+1x130	2x135+1x210	2x145+1x231	1,95	3	339	546	-				
0953	400/3/50	3	1x85+2x130	1x135+2x210	1x145+2x231	1,95	3	384	621	-				
1003	400/3/50	3	130	210	231	1,95	3	433	703	-				
1164	400/3/50	4	2x85+2x130	2x135+2x210	2x145+2x231	1,95	3	481	776	-				
1204	400/3/50	4	2x85+2x130	2x135+2x210	2x145+2x231	1,95	3	481	776	-				

F.L.I.: Full load power

F.L.A .: Full load current

L.R.A.: Locked rotor amperes for single compressor

S.A.: Inrush current

(1) Values calculated referring to the version with the maximum number of fans working at the max absorbed current (1)(2) Safety values to be considered when cabling the unit for power supply and line-protections

Electrical data valid for standard units without any additional option

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

Voltage tolerance: 10%

Maximum voltage unbalance: 3%

Give the typical operating conditions of units designed for outdoor installation, which can be associated (according to reference document IEC 60721) to the following classes: - climatic conditions class 4K4H: air temperature range from -20 up to 55°C (*), relative humidity range from 4 up to 100%, with possible precipitations, at air pressure from 70 and 106 kPa and a maximum solar radiation of 1120 W/m2

special climatic conditions negligible

 - special climatic conditions negligible
 - biological conditions class 4B1 and 4C2: locations in a generic urban area
 - mechanically active substances class 4S2: locations in areas with sand or dust representative of urban areas
 - mechanical conditions class 4M1: locations protected from significant vibrations or shocks
 The required protection level for safe operation, according to reference document IEC 60529, is IP43XW (protection against access, to the most critical unit's parts, of external devices with diameter larger than 1 mm and rain). The unit can be considered IP44XW protected, i.e. protected against access of external devices (with diameter larger than 1 mm) and water in general.

ELECTRICAL DATA

[SI System]

TFCS-FC-Z/CA

	_		Maximum values											
SIZE	Power supply			Compressor		Fan	Total (1)(2)							
	V/ph/Hz	n	F.L.I. [kW]	F.L.A. [A]	L.R.A. [A]	F.L.I. [kW]	F.L.A. [A]	F.L.I. [kW]	F.L.A. [A]	S.A. [A]				
0211	400/3/50	1	85	135	145	1,95	3	97,0	155	-				
0251	400/3/50	1	85	135	145	1,95	3	101	161	-				
0351	400/3/50	1	130	210	231	1,95	3	150	243	-				
0452	400/3/50	2	85	135	145	1,95	3	193	310	-				
0552	400/3/50	2	85	135	145	1,95	3	201	323	-				
0712	400/3/50	2	130	210	231	1,95	3	299	486	-				
0803	400/3/50	3	85	135	145	1,95	3	302	484	-				
0903	400/3/50	3	2x85+1x130	2x135+1x210	2x145+1x231	1,95	3	351	566	-				
1003	400/3/50	3	130	210	231	1,95	3	441	716	-				

F.L.I.: Full load power

F.L.A.: Full load current

L.R.A.: Locked rotor amperes for single compressor

S.A.: Inrush current

(1) Values calculated referring to the version with the maximum number of fans working at the max absorbed current (1)(2) Safety values to be considered when cabling the unit for power supply and line-protections

Electrical data valid for standard units without any additional option

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

Voltage tolerance: 10% Maximum voltage unbalance: 3%

Give the typical operating conditions of units designed for outdoor installation, which can be associated (according to reference document IEC 60721) to the following classes: - climatic conditions class 4K4H: air temperature range from -20 up to 55°C (*), relative humidity range from 4 up to 100%, with possible precipitations, at air pressure from 70 and 106 kPa and a maximum solar radiation of 1120 W/m2

- special climatic conditions negligible
 - biological conditions class 4B1 and 4C2: locations in a generic urban area
 - mechanically active substances class 4S2: locations in areas with sand or dust representative of urban areas

- mechanical conditions class 4M1: locations protected from significant vibrations or shocks The required protection level for safe operation, according to reference document IEC 60529, is IP43XW (protection against access, to the most critical unit's parts, of external devices with

diameter larger than 1 mm and rain). The unit can be considered IP44XW protected, i.e. protected against access of external devices (with diameter larger than 1 mm) and water in general.

ELECTRICAL DATA

[SI System]

TRCS-FC-Z /NG /K

		Maximum values											
SIZE	Power supply			Compressor		Fan	s (1)	Total (1)(2)					
	V/ph/Hz	n	F.L.I. [kW]	F.L.A. [A]	L.R.A. [A]	F.L.I. [kW]	F.L.A. [A]	F.L.I. [kW]	F.L.A. [A]	S.A. [A]			
0211	400/3/50	1	85	135	145	1,95	3	97,0	155	-			
0351	400/3/50	1	130	210	231	1,95	3	146	236	-			
0452	400/3/50	2	85	135	145	1,95	3	190	303	-			
0552	400/3/50	2	85	135	145	1,95	3	193	310	-			
0652	400/3/50	2	130	210	231	1,95	3	287	466	-			
0712	400/3/50	2	130	210	231	1,95	3	291	473	-			
0903	400/3/50	3	2x85+1x130	2x135+1x210	2x145+1x231	1,95	3	339	546	-			
0953	400/3/50	3	1x85+2x130	1x135+2x210	1x145+2x231	1,95	3	384	621	-			
1003	400/3/50	3	130	210	231	1,95	3	433	703	-			
1164	400/3/50	4	2x85+2x130	2x135+2x210	2x145+2x231	1,95	3	481	776	-			
1204	400/3/50	4	2x85+2x130	2x135+2x210	2x145+2x231	1,95	3	481	776	-			

F.L.I.: Full load power

F.L.A.: Full load current

L.R.A.: Locked rotor amperes for single compressor

S.A.: Inrush current

(1) Values calculated referring to the version with the maximum number of fans working at the max absorbed current (1)(2) Safety values to be considered when cabling the unit for power supply and line-protections

Electrical data valid for standard units without any additional option

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

Voltage tolerance: 10%

Maximum voltage unbalance: 3%

Give the typical operating conditions of units designed for outdoor installation, which can be associated (according to reference document IEC 60721) to the following classes: - climatic conditions class 4K4H: air temperature range from -20 up to 55°C (*), relative humidity range from 4 up to 100%, with possible precipitations, at air pressure from 70 and 106 kPa and a maximum solar radiation of 1120 W/m2

special climatic conditions negligible

 - special climatic conditions negligible
 - biological conditions class 4B1 and 4C2: locations in a generic urban area
 - mechanically active substances class 4S2: locations in areas with sand or dust representative of urban areas
 - mechanical conditions class 4M1: locations protected from significant vibrations or shocks
 The required protection level for safe operation, according to reference document IEC 60529, is IP43XW (protection against access, to the most critical unit's parts, of external devices with diameter larger than 1 mm and rain). The unit can be considered IP44XW protected, i.e. protected against access of external devices (with diameter larger than 1 mm) and water in general.

ELECTRICAL DATA

[SI System]

TRCS-FC-Z /NG /CA

	_		Maximum values											
SIZE	Power supply			Compressor		Fan	s (1)	Total (1)(2)						
	V/ph/Hz	n	F.L.I. [kW]	F.L.A. [A]	L.R.A. [A]	F.L.I. [kW]	F.L.A. [A]	F.L.I. [kW]	F.L.A. [A]	S.A. [A]				
0211	400/3/50	1	85	135	145	1,95	3	97,0	155	-				
0251	400/3/50	1	85	135	145	1,95	3	101	161	-				
0351	400/3/50	1	130	210	231	1,95	3	150	243	-				
0452	400/3/50	2	85	135	145	1,95	3	193	310	-				
0552	400/3/50	2	85	135	145	1,95	3	201	323	-				
0712	400/3/50	2	130	210	231	1,95	3	299	486	-				
0803	400/3/50	3	85	135	145	1,95	3	302	484	-				
0903	400/3/50	3	2x85+1x130	2x135+1x210	2x145+1x231	1,95	3	351	566	-				
1003	400/3/50	3	130	210	231	1,95	3	441	716	-				

F.L.I.: Full load power

F.I.A.: Full load current

L.R.A.: Locked rotor amperes for single compressor

S.A.: Inrush current

(1) Values calculated referring to the version with the maximum number of fans working at the max absorbed current (1)(2) Safety values to be considered when cabling the unit for power supply and line-protections

Electrical data valid for standard units without any additional option

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

Voltage tolerance: 10% Maximum voltage unbalance: 3%

Give the typical operating conditions of units designed for outdoor installation, which can be associated (according to reference document IEC 60721) to the following classes: - climatic conditions class 4K4H: air temperature range from -20 up to 55°C (*), relative humidity range from 4 up to 100%, with possible precipitations, at air pressure from 70 and 106 kPa and a maximum solar radiation of 1120 W/m2

- special climatic conditions negligible
 - biological conditions class 4B1 and 4C2: locations in a generic urban area
 - mechanically active substances class 4S2: locations in areas with sand or dust representative of urban areas

- mechanical conditions class 4M1: locations protected from significant vibrations or shocks The required protection level for safe operation, according to reference document IEC 60529, is IP43XW (protection against access, to the most critical unit's parts, of external devices with diameter larger than 1 mm and rain). The unit can be considered IP44XW protected, i.e. protected against access of external devices (with diameter larger than 1 mm) and water in general.

9.1 FULL LOAD SOUND LEVEL

SOUND POWER											
			Total sound								
SIZE	63	125	250	500	1000	2000	4000	8000	level		
		dB(A)									
0211	86	87	87	84	84	80	75	69	88		
0351	91	92	92	89	89	85	80	74	93		
0452	92	93	93	90	90	86	81	75	94		
0552	89	90	90	87	87	83	78	72	91		
0652	94	95	95	92	92	88	83	77	96		
0712	94	95	95	92	92	88	83	77	96		
0903	95	96	96	93	93	89	84	78	97		
0953	95	96	96	93	93	89	84	78	97		
1003	96	97	97	94	94	90	85	79	98		
1164	96	97	97	94	94	90	85	79	98		
1204	96	97	97	94	94	90	85	79	98		

Working conditions

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

Sound power in compliance with ISO 3744 for non-certified units.

Such certification refers specifically to the sound Power Level in dB(A). This is therefore the only acoustic data to be considered as binding.

			SOUN	ND PRESS	URE LEVE	L						
		Octave band [Hz]										
SIZE	63	125	250	500	1000	2000	4000	8000	level			
		Sound pressure level dB										
0211	54	55	55	52	52	48	43	37	56			
0351	59	60	60	57	57	53	48	42	61			
0452	60	61	61	58	58	54	49	43	62			
0552	56	57	57	54	54	50	45	39	58			
0652	61	62	62	59	59	55	50	44	63			
0712	61	62	62	59	59	55	50	44	63			
0903	62	63	63	60	60	56	51	45	64			
0953	62	63	63	60	60	56	51	45	64			
1003	63	64	64	61	61	57	52	46	65			
1164	63	64	64	61	61	57	52	46	65			
1204	63	64	64	61	61	57	52	46	65			

Working conditions

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

FULL LOAD SOUND LEVEL

				SOUND P	OWER						
		Octave band [Hz]									
SIZE	63	125	250	500	1000	2000	4000	8000	level		
		dB(A)									
0211	86	87	87	84	84	80	75	69	88		
0251	87	88	88	85	85	81	76	70	89		
0351	88	89	89	86	86	82	77	71	90		
0452	89	90	90	87	87	83	78	72	91		
0552	90	91	91	88	88	84	79	73	92		
0712	91	92	92	89	89	85	80	74	93		
0803	92	93	93	90	90	86	81	75	94		
0903	92	93	93	90	90	86	81	75	94		
1003	92	93	93	90	90	86	81	75	94		

Working conditions

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%. Sound power in compliance with ISO 3744 for non-certified units.

Such certification refers specifically to the sound Power Level in dB(A). This is therefore the only acoustic data to be considered as binding.

SOUND PRESSURE LEVEL											
		Total sound									
SIZE	63	125	250	500	1000	2000	4000	8000	level		
		dB(A)									
0211	54	54 55 55 52 52 48 43 37									
0251	55	56	56	53	53	49	44	38	57		
0351	56	57	57	54	54	50	45	39	58		
0452	56	57	57	54	54	50	45	39	58		
0552	57	58	58	55	55	51	46	40	59		
0712	58	59	59	56	56	52	47	41	60		
0803	59	60	60	57	57	53	48	42	61		
0903	59	60	60	57	57	53	48	42	61		
1003	59	60	60	57	57	53	48	42	61		

Working conditions

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

FULL LOAD SOUND LEVEL

SOUND POWER												
		Total sound										
SIZE	63	125	250	500	1000	2000	4000	8000	level			
		dB(A)										
0211	86	87	87	84	84	80	75	69	88			
0351	91	92	92	89	89	85	80	74	93			
0452	92	93	93	90	90	86	81	75	94			
0552	89	90	90	87	87	83	78	72	91			
0652	94	95	95	92	92	88	83	77	96			
0712	94	95	95	92	92	88	83	77	96			
0903	95	96	96	93	93	89	84	78	97			
0953	95	96	96	93	93	89	84	78	97			
1003	96	97	97	94	94	90	85	79	98			
1164	96	97	97	94	94	90	85	79	98			
1204	96	97	97	94	94	90	85	79	98			

Working conditions

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

Sound power in compliance with ISO 3744 for non-certified units.

Such certification refers specifically to the sound Power Level in dB(A). This is therefore the only acoustic data to be considered as binding.

SOUND PRESSURE LEVEL										
Octave band [Hz]										
SIZE	63	125	250	500	1000	2000	4000	8000	level	
			S	Sound press	sure level d	В			dB(A)	
0211	54	55	55	52	52	48	43	37	56	
0351	59	60	60	57	57	53	48	42	61	
0452	60	61	61	58	58	54	49	43	62	
0552	56	57	57	54	54	50	45	39	58	
0652	61	62	62	59	59	55	50	44	63	
0712	61	62	62	59	59	55	50	44	63	
0903	62	63	63	60	60	56	51	45	64	
0953	62	63	63	60	60	56	51	45	64	
1003	63	64	64	61	61	57	52	46	65	
1164	63	64	64	61	61	57	52	46	65	
1204	63	64	64	61	61	57	52	46	65	

Working conditions

ELCA_Engine ver.3.3.0.3

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

FULL LOAD SOUND LEVEL

TRCS-FC-Z /NG /CA

SOUND POWER										
				Octave b	oand [Hz]				Total sound	
SIZE	63	125	250	500	1000	2000	4000	8000	level	
				Sound pov	ver level dE	3			dB(A)	
0211	86	87	87	84	84	80	75	69	88	
0251	87	88	88	85	85	81	76	70	89	
0351	88	89	89	86	86	82	77	71	90	
0452	89	90	90	87	87	83	78	72	91	
0552	90	91	91	88	88	84	79	73	92	
0712	91	92	92	89	89	85	80	74	93	
0803	92	93	93	90	90	86	81	75	94	
0903	92	93	93	90	90	86	81	75	94	
1003	92	93	93	90	90	86	81	75	94	

Working conditions

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

Sound power in compliance with ISO 3744 for non-certified units.

Such certification refers specifically to the sound Power Level in dB(A). This is therefore the only acoustic data to be considered as binding.

SOUND PRESSURE LEVEL										
		Total sound								
SIZE	63	125	250	500	1000	2000	4000	8000	level	
		Sound pressure level dB								
0211	54	55	55	52	52	48	43	37	56	
0251	55	56	56	53	53	49	44	38	57	
0351	56	57	57	54	54	50	45	39	58	
0452	56	57	57	54	54	50	45	39	58	
0552	57	58	58	55	55	51	46	40	59	
0712	58	59	59	56	56	52	47	41	60	
0803	59	60	60	57	57	53	48	42	61	
0903	59	60	60	57	57	53	48	42	61	
1003	59	60	60	57	57	53	48	42	61	

Working conditions

Plant (side) cooling exchanger water (in/out) 15,0°C/10,0°C; Source (side) heat exchanger air (in) 30,0°C; Ethylene glycol 30%.

DIMENSIONAL DRAWINGS

[SI System]

	DIMENSIONS AND WEIGHTS				CLEARANCE				HEAT EXCHANGER USER SIDE		
SIZE		в	н	VEIGH	R1	R2	R3	R4	IN/OUT		
	[mm]	[mm]	[mm]	[kg]	[mm]	[mm]	[mm]	[mm]	TYPE	Ø	
TRCS-FC-Z /K /0211	4000	2260	2500	3430	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /K /0351	4000	2260	2500	3850	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /K /0452	4900	2260	2500	5080	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /K /0552	6400	2260	2500	5820	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /K /0652	7000	2260	2500	6340	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /K /0712	7900	2260	2500	6900	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /K /0903	10600	2260	2500	9750	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /K /0953	11200	2260	2500	10260	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /K /1003	11200	2260	2500	10530	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /K /1164	13000	2260	2500	12290	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /K /1204	13600	2260	2500	12350	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /CA /0211	4000	2260	2500	3660	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /CA /0251	4000	2260	2500	3790	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /CA /0351	4900	2260	2500	4380	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /CA /0452	6400	2260	2500	5720	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /CA /0552	7900	2260	2500	6770	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /CA /0712	10000	2260	2500	8870	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /CA /0803	12100	2260	2500	10530	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /CA /0903	13000	2260	2500	11370	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /CA /1003	13000	2260	2500	11730	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /NG /K /0211	4000	2260	2500	4120	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /NG /K /0351	4000	2260	2500	4620	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /NG /K /0452	4900	2260	2500	6100	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /NG /K /0552	6400	2260	2500	6990	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /NG /K /0652	7000	2260	2500	7610	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /NG /K /0712	7900	2260	2500	8280	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /NG /K /0903	10600	2260	2500	11700	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /NG /K /0953	11200	2260	2500	12320	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /NG /K /1003	11200	2260	2500	12640	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /NG /K /1164	13000	2260	2500	14750	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /NG /K /1204	13600	2260	2500	14820	2000	2000	1800	2000	Н	8"	
TRCS-FC-Z /NG /CA /0211	4000	2260	2500	4400	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /NG /CA /0251	4000	2260	2500	4550	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /NG /CA /0351	4900	2260	2500	5260	2000	2000	1800	2000	Н	4"	
TRCS-FC-Z /NG /CA /0452	6400	2260	2500	6870	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /NG /CA /0552	7900	2260	2500	8130	2000	2000	1800	2000	Н	5"	
TRCS-FC-Z /NG /CA /0712	10000	2260	2500	10650	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /NG /CA /0803	12100	2260	2500	12640	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /NG /CA /0903	13000	2260	2500	13650	2000	2000	1800	2000	Н	6"	
TRCS-FC-Z /NG /CA /1003	13000	2260	2500	14080	2000	2000	1800	2000	Н	8"	

DIMENSIONAL DRAWINGS

LEGEND OF PIPE CONNECTIONS

UNI ISO 228/1

Pipe threads where pressure-tight joints are not made on the threads - Designation, dimensions and tolerances Used terminology:

G: Pipe threads where pressure-tight joints are not made on the threads A: Close tolerance class for external pipe threads where pressure-tight joints are not made on the threads B: Wider tolerance class for external pipe threads where pressure-tight joints are not made on the threads Internal threads: G letter followed by thread mark (only tolerance class) External threads: G letter followed by thread mark and by A letter for A class external threads or by B letter for B class external threads.

UNI EN 10226-1

Pipe threads where pressure-tight joints are made on the threads - Designation, dimensions and tolerances

Used terminology:

Rp: Internal cylindrical threads where pressure-tight joints are made on the threads

RC: Internal conical threads where pressure-tight joints are made on the threads R: External conical threads where pressure-tight joints are made on the threads R: External conical threads: R letter followed by p letter Internal conical threads: R letter followed by c letter External conical threads: R letter followed by c letter External conical threads: R letter followed by c letter

Designation	Description
UNI EN 10226-1 - Rp 1 1/2	Internal cylindrical threads where pressure-tight joints are made on the threads, defined by standard UNI ISO 7/1 Conventional ø 1 1/2"
UNI EN 10226-1 - Rp 2 1/2	Internal cylindrical threads where pressure-tight joints are made on the threads, defined by standard UNI ISO 7/1 Conventional Ø 2 1/2"
UNI EN 10226-1 - Rp 3	Internal cylindrical threads where pressure-tight joints are made on the threads, defined by standard UNI ISO 7/1 Conventional ø 3"
UNI EN 10226-1 - R 3	External conical threads where pressure-tight joints are made on the threads, defined by standard UNI ISO 7/1 Conventional ø 3"
UNI ISO 228/1 - G 4 B	Internal cylindrical threads where pressure-tight joints are not made on the threads, defined by standard UNI ISO 228/1 Tolerance class B for external thread Conventional ø 4"
DN 80 PN 16	Flange Nominal Diameter: 80 mm Nominal Pressure: 16 bar

Notes:

Conventional diameter value [in inches] identifies short thread designation, based upon the relative standard. All relative values are defined by standards. As example, here below some values:

	UNI EN 10226-1	UNI ISO 228/1
Conventional ø	1"	1"
Pitch	2.309 mm	2.309 mm
External ø	33.249 mm	33.249 mm
Core ø	30.291 mm	30.291 mm
Thread height	1.479 mm	1.479 mm

11.1 HYDRONIC GROUP

- Hydronic group consisting of:
- 2 pumps, 4 pole, low or high head
- differential pressure switch - discharge valves on exchanger
- pump inlet / oulet valves
- check valve
- purge valve

- drain plug

Each of the components of the hydraulic group has been designed to optimise hydraulic and electrical installation space,

time and costs. The hydronic group is protected by a special casing ventilating. The second pump operates in stand-by to the first. The relative operating hours of the two pumps are balanced. In case the operating pump

breaks down, the reserve pump is automatically enabled. The electrical panel of the unit is protected with fuses and contactors with thermals cut-out.

The choice between in-line and end-suction pumps has been made keeping in consideration the best configuration in terms of dimensions and performances.

11.2 IN-LINE PUMPS SPECIFICATION

Low or high head pump Centrifugal pumps with in-line suction and delivery flanges, twin version. Pump body in cast iron with elettrophoretic painting (cataphoresis) and impeller in composite material PES/PP 30% GF.

Mechanical seal with components in ceramics or carbon and EPDM elastomers. Three-phase high efficiency electric motor, directly couple, protected to IP55, insulation class F (IEG 85), designed in line with EUP IE3 requirements.

11.3 SINGLE PUMPS SPECIFICATION

low or high head pump Horizontal cochlea centrifugal pump, normalised to EN 733, axial suction and radial delivery, pump body and impeller in cast iron with elettrophoretic painting (cataphoresis), shaft in stainless steel AISI 304.

Mechanical seal with components in ceramic or carbon and EPDM.Three-phase high efficiency EFF2 electric motor, directly couple, protected to IP55, insulation class F (IEG 85).

11.4 SPECIAL PUMPS

For pumps with different configurations, please contact our sales department.

The supply does not include the following accessories though

- these are recommended to ensure correct system operation:
- Flow-out switch
- Pressure gauges upline and downline from the unit
- Flexible joints on piping
- On-off valves
- Outlet control thermometer

- Mains filter.

Possible configuration

	Versions					
FOWF5 GROUP	CA	к				
2 POMPE 4P (2EV AP)	Х	Х				
2 POMPE 4P (2EV BP)	X	Х				

HYDRONIC GROUP

Schema idraulico pompe ORTOGONALI - configurazione STD Hydraulic diagram END-SUCTION water PUMPS – STD configuration

	LEGENDA - LEGEND
BC	Batteria di condensazione Condenser coil
BR	Batteria ad acqua Water coil
EV	Evaporatore allagato Flooded evaporator
FH	Filtro a Y Y strainer
д	Pompa Pump
RH	Rubinetti di servizio Service valve
S1	Sonda ingresso acqua evaporatore Evaporator inlet water probe
S2	Sonda uscita acqua evaporatore Evaporator outlet water probe
S3	Sonda ritorno impianto Return water probe
SAE	Sonda aria esterna External air probe
V1 / V2	Rubinetti motorizzati Actuated valve
V3	Rubinetto di servizio Service valve
VR	Valvola di non ritorno Check valve

HYDRONIC GROUP

Schema idraulico pompe ORTOGONALI - configurazione NG Hydraulic diagram END-SUCTION water PUMPS – NG configuration

Schema idraulico pompe IN-LINE - configurazione STD Hydraulic diagram IN-LINE water PUMPS – STD configuration

	LEGENDA - LEGEND
BC	Batteria di condensazione Condenser coil
BR	Batteria ad acqua Water coil
EV	Evaporatore allagato Flooded evaporator
FH	Filtro a Y Y strainer
Ъ	Pompa Pump
RH	Rubinetti di servizio Service valve
S1	Sonda ingresso acqua evaporatore Evaporator inlet water probe
S2	Sonda uscita acqua evaporatore Evaporator outlet water probe
S3	Sonda ritorno impianto Return water probe
SAE	Sonda aria esterna External air probe
V1 / V2	Rubinetti motorizzati Actuated valve
V3	Rubinetto di servizio Service valve
VR	Valvola di non ritorno Check valve
RAH	Rubinetto aspirazione Pump suction valve
RMH	Rubinetto mandata Pump discharge valve

HYDRONIC GROUP

Schema idraulico pompe IN-LINE - configurazione NG Hydraulic diagram IN-LINE water PUMPS – NG configuration

	LEGENDA - LEGEND
BC	Batteria di condensazione / Condenser coil
BPHE (NG)	Scambiatore a piastre / Plate heat exchanger
BR	Batteria ad acqua / Water coil
EV	Evaporatore allagato / Flooded evaporator
FH	Filtro a Y / Y strainer
M	Manometro / Pressure gauge
Ь	Pompa / Pump
RH	Rubinetti di servizio / Service valve
RR	Rubinetto di reintegro / Water filling
S1	Sonda ingresso acqua evaporatore Evaporator inlet water probe
S2	Sonda uscita acqua evaporatore Evaporator outlet water probe
S3	Sonda ritorno impianto / Return water probe
SAE	Sonda aria esterna / External air probe
۲۱	Rubinetto motorizzato / Actuated valve
VA	Valvola di sicurezza High pressure relief valve
VE	Vaso di espansione / Expansion tank
VR	Valvola di non ritorno / Check valve
RAH	Rubinetto aspirazione / Pump suction valve
RMH	Rubinetto mandata / Pump discharge valve

HYDRONIC GROUP

HEAT EXCHANGER USER SIDE - 2 PUMPS 4 POLES (2EV HH)

СН			СН						
SI	ZE	Pfgross	Qfgross	Dif	Madal	N.	F.L.A.	F.L.I.	HU
		[kW] (1)	[l/s] (1)	- KII.	woder	Pole	[A]	[kW]	[kPa]
	CA	318	15,2						227
0211	К	310	14,9	A1	TPD 80-340/4	4	21	11,0	232
0251	CA	363	17,4	A2					212
	CA	509	24,4						194
0351	К	496	23,7	B1	TPD 100-330/4	4	29	15,0	200
	CA	632	30,3		TPD 100-370/4	4	37	18,5	226
0452	К	610	29,2	_ D1	TPD 100-330/4	4	29	15,0	189
	CA	733	35,1		TPD 100-410/4	4	43	22,0	242
0552	К	708	33,9	F1	TPD 100-370/4	4	37	18,5	214
0652	К	969	46,4	G1	TPD 100-410/4	4	43	22,0	197
	CA	1017	48,7		TPD 125-400/4	4	56	30,0	256
0712	К	1007	48,2	11	TPD 100-410/4	4	43	22,0	191
0803	CA	1097	52,5	J1					268
	CA	1242	59,4						224
0903	К	1217	58,2	J2	TPD 125-400/4	4	56	30,0	232
0953	К	1287	61,6	J3					225
1000	CA	1485	71,1				=0		202
1003	К	1460	69,9	K1	NB 125-315/317	4	58	30,0	208
1164	К	1621	77,6	L1	ND 405 045/000	4	60	27.0	239
1204	К	1693	81,0	L2	NB 125-315/336	4	69	37,0	220

(1) Values refer to nominal conditions

CH Cooling mode Pf Cooling capacity unit (Cooling mode)

Pt Heating capacity unit (Heating mode)

Q Plant (side) exchanger water flow

F.L.I. Pump power input

F.L.A. Pump running current

HU Pump residual pressure head (Units with hydronic group without mains filter)

HEAT EXCHANGER USER SIDE - 2 PUMPS 4 POLES (2EV HH)

HYDRONIC GROUP

HEAT EXCHANGER USER SIDE - 2 PUMPS 4 POLES (2EV LH)

SIZE		СН		PUMP					СН
		Pfgross	Qfgross [l/s] (1)	Dif	Model	Ν.	F.L.A.	F.L.I.	HU
		[kW] (1)		- KII.		Pole	[A]	[kW]	[kPa]
0211	CA	318	15,2	A1	TPD 80-240/4	4	11	5,50	109
	К	310	14,9						115
0251	CA	363	17,4	B1	TPD 80-270/4	4	15	7,50	141
0351	CA	509	24,4		TPD 100-250/4	4	21	11,0	136
	К	496	23,7	D1	TPD 80-270/4	4	15	7,50	104
0452	CA	632	30,3		TPD 100-250/4	4	21	11,0	122
	К	610	29,2	E1					131
0552	CA	733	35,1		TPD 100-330/4	4	29	15,0	156
	К	708	33,9	G1	TPD 100-250/4	4	21	11,0	107
0652	К	969	46,4	H1	TPD 125-230/4	4	29	15,0	107
0712	CA	1017	48,7		TPD 125-300/4	4	35	18,5	155
	К	1007	48,2	J1	TPD 125-230/4	4	29	15,0	106
0803	CA	1097	52,5	K1					149
0903	CA	1242	59,4		TPD 150-250/4	4	43	22,0	125
	К	1217	58,2	K2					129
0953	К	1287	61,6	K3					133
1003	CA	1485	71,1		NB 125-315/290	4	43	22,0	123
	К	1460	69,9	M1	TPD 150-250/4	4	43	22,0	102
1164	К	1621	77,6	N1	NB 125-250/269	4	58	30,0	116
1204	К	1693	81,0	N2					103

(1) Values refer to nominal conditions

CH Cooling mode Pf Cooling capacity unit (Cooling mode)

Pt Heating capacity unit (Heating mode)

Q Plant (side) exchanger water flow

F.L.I. Pump power input

F.L.A. Pump running current

HU Pump residual pressure head (Units with hydronic group without mains filter)

FIXED SPEED CENTRIFUGAL PUMPS SELECTION IN FC UNITS

Free-cooling units take advantage of low external air temperatures to cool a fluid without the aid of compressors, obtaining in this way a significant saving of energy costs.

Depending on their operation mode (mechanical cooling, total freecooling or mixing mode), total hydraulic pressure drops Δp can vary considerably from standard to free-cooling mode. Indeed, the presence of free-cooling air-water coils affect the head loss in the water circuit increasing the amount of pressure drops.

вс	Condenser coil			
BR	Water coil			
EV	Evaporator			
Р	Pump			

Mechanical cooling

The unit operates as a traditional chiller, the carrier fluid is chilled by the evaporating refrigerant in the user side heat exchanger using the work of the compressors. The water coil is completely off. Unit pressure drop ΔpCH is given by the sum of the evaporator and hydraulic circuit pressure drops.

Fig. 1 Hydraulic diagram - standard chiller mode

Free-cooling

As the outdoor air temperature drops 1 degree below the returning water temperature, a valve system redirects the water to special finned coils that allow the air to directly exchange heat with the operating mixture. The fluid is cooled when passing through the coil and heat is rejected to the atmosphere.

Fig. 2 Hydraulic diagram - free-cooling mode

Unit pressure drops in free cooling mode ΔpFC includes the evaporator, free-cooling hydraulic circuit and the air/water exchangers pressure drops.

Free-cooling [NG] In case of NG (no glycol) units, hydraulic pressure drops Δp are constant thanks to an intermediate heat exchanger that isolates the free-cooling circuit from the primary circuit.

Characteristic curves

The two operating modes are clearly shown in the system characteristic curve that describes the total amount of pressure drops of the installation. Fig. 3 plots the head Hsys required by the system as a function of the flow rate Q according to the chiller operating mode.

Fig. 3 System resistance curve

On the other hand, centrifugal pumps deliver a variable flow rate Q (increasing with decreasing head) when operating at constant speed. They are therefore able to accommodate changes depending on the system curve. Fig 4

Fig. 4 Performance curve of the pump

The operating point of a centrifugal pump, also called its duty point, is given by the intersection of the pump performance curve with the system characteristic curve. The flow rate Q and the developed head H are both determined by the intersection. When the system curve changes, the pump's operating point changes too.

Fig. 5 Performance curves

By increasing the system resistance by changing the unit mode from standard to free-cooling, the original system curve HsysCH becomes steeper and transforms into HsysFC. If the speed of the pump is constant, the operating point B1 moves to B2 on the pump characteristic curve, in other words, at a lower flow rate. The new operating point is given by the balance between the required system head and the one provided by the pump. Water flow decreases compared to the nominal one, consequently medium ΔT increases.

Pumps selection

Pump capacity starting from one operating point rather than the other one entails different obstructions, power consumption and operational problems. In both cases an increasing/decreasing water flow is expected compared with the nominal value, shifting from one functioning mode to the other.

Hydronic kit selection is realized considering mechanical cooling operating mode, which provide the following advantages:

- Pump size is smaller (lower required head) and power consumption is lower. As FC units are a typical solution for technological systems or industrial processes which operate continuously throughout the year, a lower hydronic kit power consumption means huge energy savings.
- Pump size capacity based on the higher pressure drop, in FC mode, this means that when the unit works as a standard chiller, the characteristic curve is lower and the new duty point has a larger water flow than the nominal one with the risk of working off its curve. Pumps operating at the right-hand end of the pump curve leads to

instabilities in the flow, furthermore the likelihood of cavitation increases and power absorption is higher.

 Reduced dimensions, which means a more ergonomic workplace during unit maintenance, when pumps are provided on board, and a reduced amount of space and installation costs when installed separately.

In both cases, the capacity of the hydronic kit accordingly to one of the unit's operation mode, one of the two working points won't correspond to the nominal water flow, as moving the characteristic curve implies a pressure head change. To prevent this from happening, an inverter controlled pump or the RC 2PS system can be used to have a constant carrier fluid flow thanks to the pump speed variation.

Fig. 6 Pump performance curves at variable speed

2PS (2 pump speed)

In a plant with a free-cooling chiller, 2PS system (opt. codes 4863-4883) keeps the primary circuit water flow constant as a function of the unit operating mode.

Thanks to a 0-10V signal, inverter pumps can work at two fixed rotational speeds accordingly to the unit's pressure drops.

The two values are set by the technical assistance centre during the chiller commissioning through the corresponding parameter configuration interface.

12.2 VPF systems for plants designed with a single variable flow hydraulic circuit

The energy consumption associated with fluid circulation weighs heavily on the total operating costs of a large installation, especially when the units work at part load, and even more, when they are in stand-by. Under these conditions, although the power absorbed by the compressors and fans is reduced, the power consumed for water circulation remains high. The system power consumption can be reduced using pumps with continuous flow control by inverter. Energy savings are considerable and immediately evident, to the extent that a Δx reduction of the flow of water to be delivered to the system, amounts to a proportional reduction of $(\Delta x)^3$ in the power absorbed. In the most advanced systems these ones become the pumps for the entire hydraulic circuit, and this eliminates the need to detach the primary circuit, dedicated to the circulation of the water on the units side, from the secondary one, dedicated to water circulation throughout the entire system. In traditional systems it was the only choice possible and imposed mostly by the need for the chiller to work with constant water flow through the evaporator. Now designers can work without worrying about this limit, as the units are designed to work with the maximum efficiency even with variable flow through the evaporator, managing the resources independently, in order to keep the outlet water temperature constantly at the set-point entered by the user. This simplifies the design and realization of variable flow systems and offers advantages in terms of both reductions in consumption and hydraulic circuit sizing. The integration of pumps + inverters built-in the unit permits significant savings in space, circuit components, and system start-up times.

The VPF (Variable Primary Flow system) is the solution that allows to have the variable water flow on the user side (evaporator) in the plants with primary circuit only.

The VPF kit includes the following devices:

- control device (called DP3 in the herebelow scheme), mounted on the electrical panel, and pressure differential transducer (with 4-20 mA signal), mounted on the heat exchanger user side
- control device (called PL3 in the herebelow scheme), positioned inside the elettrical panel
- pumps with inverter and dedicated signals for the communication with the controller of the unit (W3000TE)

To these ones it's mandatory to add (not supplied along with the unit):

- pressure transducer on plant side, with the dedicated signal 4-20 mA for the communication with the PL3 device (this transducer must be installed on the longest (worst) leg of the installation)
- 2 way by-pass valve, with a dedicated 0-10V signal for the communication with the PL3 device

When the plant includes more units connected together with a management system (Manager 3000), it's mandatory to order also the option 3030 "VPF control from Manager 3000", in order to have the installation of the PL3 device inside the Manager itself and not in the electrical panel of each unit.

How it works

The VPF option measures the differential pressure across the installation in order to keep it between a minimum and a maximum value programmed in the PL3 device. As long as the measured value remains inside this range, the output signal to the pumps remains the same. On the other side when the measured value is bigger than the maximum programmed, the signal to the pumps is decreased, and in case the measured value results smaller than the minimum programmed, the signal to the pumps is increased. In any case the change of signal is performed through step by step adjustments and monitoring constantly the effects in order to avoid rough changes and guaranteeing the return of the measured value inside the programmed range as much quickly as possible.

In case the differential pressure requires a water flow smaller than the minimum necessary for the heat exchanger, the DP3 device communicates with the controller in the meantime that the PL3 send to the by-pass valve the signal to open gradually in order to protect the chiller.

When the plant includes more units, the working logic remains the same. The PL3 device, installed in the Manager, collects the information from the pressure transducer mounted in the plant (in common for all the units) and communicates with the bypass valve (this one too in common for all the units), while the differential transducer mounted on each evaporator, the related DP3 device and the management of the pumps+inverters are duty of the W3000 of each unit.

12.3 VPF.D systems for plants designed with both primary circuit and secondary one with variable flow

Also in those cases when it's not possible to design a single circuit with variable flow or when it's necessary to maintain decoupled the primary circuit (dedicated to the chillers) and the secondary one (dedicated to the plant users), it's possible to have the management of the pumps and inverters directly from the unit.

The energy savings are lower than the solution with a unique VPF system, but still important especially when the units are in stand-by, as in this case it's possible to reduce down to 50% the water flow.

These systems can be easily adopted in retrofit application, where the chiller is supposed to be replaced but the plant isn't. This solution guarantees also the water flow balancing between primary and secondary circuit, in order to avoid the flow inversion in the decoupling pipe.

The VPF.D system (Variable Primary Flow with Decoupler) is the option that allows to have variable water flow on the user side exchanger (evaporator) in plants with both primary and secondary circuits and additional pumps on the user side. The VPF.D option includes:

- control device (PL3 in the herebelow scheme), mounted in the electrical panel
- 2 temperature probes, provided along with the unit but installed by the client in the plant, one for the delivery line and one for the by-pass line
- pumps with inverters and related signals for the communication with the controller W3000TE

When the plant includes more units connected together with a management system (Manager 3000), it's mandatory to order also the option 3030 "VPF control from Manager 3000", in order to have the installation of the PL3 device inside the Manager itself and not in the electrical panel of each unit.

How it works

The VPF. D measures, thorugh the two probes installed, the temperatures T1 and T2 (on the delivery and by-pass lines), keeping T2=T1 as control target.

As long as T1=T2, the water flow in the primary circuit is equal or higher than in the secondary one. When T2>T1, the water flow in the primary circuit becomes lower than the flow in the secondary circuit, leading to recirculation of warm water coming back from the installation and mixing with the cold supply water.

In order to rebalance this situation the speed of the pumps is being increased gradually in order to let the temperature T1 be again equal to T2.

The target of the VPF.D is then to keep constant the ΔT in the primary circuit. The secondary circuit remains completely independent and so has to be managed and controlled by the customer side.

The minimum water flow through the user side exchanger is guaranteed by a fixed setting for the minimum speed of the pumps (inside the service menu of the unit controller).

When the plant includes more units, the working logic remains the same. The PL3 device, installed in the Manager, collect the information about temperatures T1 and T2, while the W3000 of each unit takes care of the speed of the pumps, according to the signal sent from the Manager. The Manager itself takes care also that the pumps of each chiller work at the same speed and that, when an additional unit is switched on, the speed of the already running pumps is automatically aligned

For a greener tomorrow for a greener to the transformer t

MITSUBISHI ELECTRIC HYDRONICS & IT COOLING SYSTEMS S.p.A.

Head Office: Via Roma 5 • 27010 Valle Salimbene (PV) • Italy Ph. (+39) (0) 382 433 811 • Fax (+39) (0) 382 587148 www.rcitcooling.com www.melcohit.com